## **Poster number:** 15594

# In-situ visualization and measurement of tumor-infiltrating lymphocytes (TILs) on intact FFPE renal **cell carcinoma (RCC) tissue using the spatial molecular imager (SMI)** Evan W. Newell<sup>1</sup>, Youngmi Kim<sup>2</sup>, Heeju Ryu<sup>1</sup>, Shamin Li<sup>1</sup>, Yannick Simoni<sup>1</sup>, Michael Leon<sup>2</sup>, Sean Kim<sup>2</sup>, Mark Gregory<sup>2</sup>, Patrick Danaher<sup>2</sup>, Sarah Warren<sup>2</sup>,

# Joseph Beechem<sup>2</sup>



1. Fred Hutch, Vaccine and Infectious Disease Division, Seattle WA 98109 2. Nanostring Technologies, Seattle WA 98109

### Summary

Although cancer immunotherapies can effectively restore T cell-mediated immunity leading to sustained clinical responses, these responses are unpredictable partly due to highly heterogeneous phenotypes of tumor-infiltrating lymphocytes (TILs) between patients. Thus, understanding such TILs and their roles in the context of tumor microenvironments (TME) may lead to developing better immunotherapy solutions.

Many previous studies have highlighted the high degree of heterogeneity in the phenotypes of tumor infiltrating lymphocytes. We and others also reported evidence for an abundance of non-tumor specific T cells infiltrating tumors and we've shown that these "bystander" T cells do not express markers associated with terminal exhaustion, such as CD39.

Here, using a combination of methodologies, we investigate relationships between lymphocyte phenotypic diversity, antigen-specificity and the spatial localization of tumor infiltrating immune cells.

Using CyTOF, scRNA-seq, and TCR sequencing analysis of dissociated, consistent with our previous reports, we found T cell populations could be segregated based on markers associated with chronic T cell receptor signaling and many T cells with an exhausted phenotype were clonally expanded in the tumor but not the blood.

To link multi-omics TIL profiling to spatial localization, we used the spatial molecular imager (SMI), which is a novel spatial transcriptomics platform that allows spatially resolved highdimensional cellular phenotyping for comprehensive TIL profiling. SMI uses fluorescent molecular barcodes to enable in-situ measurement of biological targets on an intact tissue sample.

SMI analysis of matched tumor tissue was used to accurately quantify the densities and to compare the spatial organization of various T cell and other cellular subsets. Preliminary data show that T cells with the most terminally exhausted gene expression localize to areas of with a high degree of T cell infiltration into the tumor bed.





FOR RESEARCH USE ONLY. Not for use in diagnostic procedures. www.nanostring.com | info@nanostring.com © 2021 NanoString Technologies, Inc.







Mass cytometry analysis of RCC tumor infiltrating CD8 T cells highlights variable abundance of bystander tumor infiltrating T cells:



## The Spatial Molecular Imaging (SMI) platform applied to an RCC tumor allows for subcellular 1000-plex spatial transcriptomics

Cell Typing and mapping of the renal cell carcinoma (kidney tumors) overview

and mapped back into the neative locations.

## transcriptional profiles:

### Marker-gene expression of each cell types are visualized in a spatial map. Cell type b (tumor) Plasmablast

Single-cell sequencing based analysis of RCC tumor infiltrating CD8 T cells allows for determination of T cell subset

## Integration of non-spatial scRNA-seq data to spatial SMI single cell data helps to visualize rare population of ce

Individual cells were scored for the abundance of each cell type among their 200 closest neighbors. Cells were then clustered according to this neighborhood data. In this figure, cells are shown in physical space and colored by their neighborhood cluster



The following figure shows where those 8 T cell subsets are found in spatial cluster 4 except T0 and T6.



As we previously reported for lung and colon cancer, virus-specific bystander T cells can be readily detected in kidney (RCC) tumors and display diverse phenotypic profiles.

The Spatial Molecular Imager (SMI) is a single instrument solution for subcellular spatial analysis. Provides sub-cellular resolution of 1000+-plex transcriptomic information.

Distinct niches of the tumor microenvironment can be delineated within RCC tumor sections. By this analysis, tumor-rich, stroma, and various regions with high densities of immune cell infiltrates (e.g., regions co-enriched for T and B cells) can be clearly identified

Cellular subsets with gene expression profiles defined using single-cell sequencing-based multi-omics can spatially defined using SMI. T cells with an exhausted phenotype are preferentially enriched in tumor-dense regions in contrast to non-exhausted cells with bystander-like phenotypes.

## nanoStrinq

## NanoString Technologies

530 Fairview Avenue North, Seattle, WA 98109

## **CURES START HERE**

## types of interests. We used CITE-seq to profile and 0 1 2 3 4 5 6 7 cluster T cell subtypes. Based on protein expression, we identified 8 clusters of T cell subsets. From the data, we determined gene expression cluster signatures of T cell subsets. cluster4 cluster5 cluster3 cluster6 Notable clusters: cluster8 0 - CD8+CD69+CD103+CD39+ 2 - CD8+CD69-CD103-CD39cluster2 3 – CD4<sup>+</sup> non-Treg cluster7 7 – CD4<sup>+</sup> Treg cluster1 inriched in spatial clusters. As expected, most of T cell subsets are Each T cell subset is spatially mapped out 3 cluster6 cluster8 ).2 cluster2 cluster7 0.1 cluster1 **T7 T3**

Conclusion